270 research outputs found

    Surface Plasmon Excitation of Second Harmonic light: Emission and Absorption

    Full text link
    We aim to clarify the role that absorption plays in nonlinear optical processes in a variety of metallic nanostructures and show how it relates to emission and conversion efficiency. We define a figure of merit that establishes the structure's ability to either favor or impede second harmonic generation. Our findings suggest that, despite the best efforts embarked upon to enhance local fields and light coupling via plasmon excitation, nearly always the absorbed harmonic energy far surpasses the harmonic energy emitted in the far field. Qualitative and quantitative understanding of absorption processes is crucial in the evaluation of practical designs of plasmonic nanostructures for the purpose of frequency mixing

    Quantum Conductivity for Metal-Insulator-Metal Nanostructures

    Full text link
    We present a methodology based on quantum mechanics for assigning quantum conductivity when an ac field is applied across a variable gap between two plasmonic nanoparticles with an insulator sandwiched between them. The quantum tunneling effect is portrayed by a set of quantum conductivity coefficients describing the linear ac conductivity responding at the frequency of the applied field and nonlinear coefficients that modulate the field amplitude at the fundamental frequency and its harmonics. The quantum conductivity, determined with no fit parameters, has both frequency and gap dependence that can be applied to determine the nonlinear quantum effects of strong applied electromagnetic fields even when the system is composed of dissimilar metal nanostructures. Our methodology compares well to results on quantum tunneling effects reported in the literature and it is simple to extend it to a number of systems with different metals and different insulators between them

    Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties

    Full text link
    We investigate second harmonic generation, low-threshold multistability, all-optical switching, and inherently nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ frequency region, achieved by using gain medium inside the shells' dielectric cores, enhances the nonlinear properties. Reflection is inhibited and the electric field component normal to the slab interface is enhanced near the effective pseudo-Brewster angle, where the effective \epsilon-near-zero condition triggers a non-resonant, impedance-matching phenomenon. We show that the slab displays a strong effective, spatial nonlocality associated with leaky modes that are mediated by the compensation of damping. The presence of these leaky modes then induces further spectral and angular conditions where the local fields are enhanced, thus opening new windows of opportunity for the enhancement of nonlinear optical processes

    Gain assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells

    Full text link
    We investigate enhanced harmonic generation processes in gain-assisted, near-zero permittivity metamaterials composed of spherical plasmonic nanoshells. We report the presence of narrow-band features in transmission, reflection and absorption induced by the presence of an active material inside the core of the nanoshells. The damping-compensation mechanism used to achieve the near-zero effective permittivity condition also induces a significant increase in field localization and strength and, consequently, enhancement of linear absorption. When only metal nonlinearities are considered, second and third harmonic generation efficiencies obtained by probing the structure in the vicinity of the near-zero permittivity condition approach values as high as for irradiance value as low as . These results clearly demonstrate that a relatively straightforward path now exists to the development of exotic and extreme nonlinear optical phenomena in the KW/cm2 rang

    Nonlinear dynamics in low permittivity media: the impact of losses.

    Get PDF
    Slabs of materials with near-zero permittivity display enhanced nonlinear processes. We show that field enhancement due to the continuity of the longitudinal component of the displacement field drastically enhances harmonic generation. We investigate the impact of losses with and without bulk nonlinearities and demonstrate that in the latter scenario surface, magnetic and quadrupolar nonlinear sources cannot always be ignored

    Analysis of second harmonic generation in photonic-crystal-assisted waveguides

    Get PDF
    We study second harmonic generation in a planar dielectric waveguide having a low-index, polymer core layer, bounded by two multilayer stacks. This geometry allows exceptionally strong confinement of the light at the fundamental wavelength inside the core region with virtually zero net propagation losses for distances that exceed several centimeters, provided material and scattering losses are neglected. A phase-matched configuration of the waveguide is reported in which the pump signal is the lowest-order mode of the waveguide, and the generated second harmonic signal corresponds to the third propagation mode of the waveguide. Using a polymer waveguide core, having chi(2)=100 pm/V, we predict a conversion efficiency of approximately 90% after a propagation distance of 2 mm, using peak pump intensities inside the core of the waveguide of 1.35 GW/cm^2. If the waveguide core contains polymer layers with different glass transition temperatures, the layers can be poled independently to maximize the overlap integral, and similar pump depletions may be achieved over a distance of approximately 500 microns.Comment: 20 pages, 7 figures, 330k

    Analog image processing with nonlinear nonlocal flat optics

    Get PDF
    Digital signal processing has revolutionized many fields of science and engineering, but it still shows critical limits, mainly related to the complexity, power consumption, and limited speed of analogue-to-digital converters. A long-sought solution to overcome these hurdles is optical analog computing. In this regard, flat optics has been recently unveiled as a powerful platform to perform data processing in real-time, with low power consumption and a small footprint. So far, these explorations have been mainly limited to linear optics. Arguably, significantly more impact may be garnered from pushing this operation towards nonlinear processing of the incoming signals. In this context, we demonstrate here that nonlinear phenomena combined with engineered nonlocality in flat optics devices can be leveraged to synthesize Volterra kernels able to outperform linear optical analog image processing

    Second harmonic double resonance cones in dispersive hyperbolic metamaterials

    Get PDF
    We study the formation of second harmonic double-resonance cones in hyperbolic metamaterials. An electric dipole on the surface of the structure induces second harmonic light to propagate into two distinct volume plasmon-polariton channels: A signal that propagates within its own peculiar resonance cone; and a phase-locked signal that is trapped under the pump's resonance cone. Metamaterial dispersion and birefringence induce a large angular divergence between the two volume plasmon-polaritons, making these structures ideal for subwavelength second and higher harmonic imaging microscopy
    • …
    corecore